National Science and Technology Forum (NSTF)

The Biomimicry Diagnostic Verification Controls team

For using biomimicry to verify diagnostic tests for COVID-19 and other infectious diseases.

The Biomimicry Diagnostic Verification Controls team from the University of the Witwatersrand (Wits), represented by Professor Bavesh Kana, won the 2020/2021 Innovation Award: Corporate Organisation for their use of biomimicry to verify the accuracy of diagnostic tests for Covid-19 and other infectious diseases.

The team’s work significantly reduced the risk burden on testers and improved test verification procedures, enabling the verification of Covid-19 diagnostics in South Africa, and is now being deployed in 14 other countries.

Fast and accurate mass testing of infectious diseases made possible

The battle against diseases such as Covid-19 and tuberculosis demands that testing be done at speed, as accurately as possible, and in significant quantities. To ensure that this diagnostic testing is done properly and accurately, control materials are required. These control materials are live disease causing agents — living corona virus or TB bacteria — used to determine whether or not the testing results are correct. These controls also ensure that testing labs are handling the specimens correctly and that the tests are fit for diagnosis of the indicated diseases. But as these organisms are infectious by their very nature, they cannot be used to verify diagnostics, which is a significant stumbling block. So, to overcome this challenge and streamline mass testing of disease, the Biomimicry Diagnostic Verification Controls Team from the University of Witwatersrand developed biomimicry-based controls using harmless bacteria.

“We have done this for numerous diseases, but the most powerful example today is Covid-19,” says Professor Bavesh Kana, DSI/NRF Centre of Excellence for Biomedical TB Research at Wits. “When we talk of testing for this virus, we think of labs and test results on the mobile phone — what we call the front end of the process. The question is, how do you know if your results are right and not mixed up with another specimen? There are thousands of these tests done every day and the labs are overwhelmed.”

This was a critical consideration during Covid-19 as labs were under pressure, had to bring in more staff, and needed to know that the diagnostic test used for the swabs was fit for purpose. They needed to know that the tests being used were reliable and valid, especially after a global shortage and as new tests entered the market rapidly.


“This is where our innovation comes in,” says Kana. “For any lab to operate they need quality assurance systems, good sample handling and proficiency testing. For example, to confirm that a Covid-19 test works, they put a known amount of the virus into the system, and if the diagnostic tests the expected result, the lab can operate with confidence that patient swabs will be processed through a high-quality workflow. However, to do this, you need a specimen with live Covid-19 virus and you need to send this live sample out to laboratories, which is a dangerous prospect. The labs were stuck — how could they implement process controls without dealing with the live virus?”

The team took a soil dwelling bacterium that isn’t dangerous or infectious, and they engineered small bits of the virus genome into this bacterium. Together with a local company, SmartSpot Quality CC, the team put this bacterium onto small pieces of paper with some dye to create a dried culture spot that can be used by the laboratories to determine if their Covid-19 tests are operating as expected. Simple, safe and incredibly effective.

“That’s all they need, this piece of paper to confirm that their tests are accurate,” concludes Kana.

Today, the solution is being used in nearly 30 countries globally, saving lives and keeping frontline workers safe with intelligent biomimicry instead of live virus. It’s an impressive innovation made into a reality by a dedicated team that would stop at nothing to make it happen during a global pandemic. The team includes Dr Edith Machowski, Dr Christopher Ealand, Dr Bhavna Gordhan, Dr Dale Liebenberg, Dean Sher, Anest Reyneke, Chyreene Truluck and Tyron Grant. — Tamsin Oxford

Read the special Mail & Guardian supplement about all the NSTF-South32 Award winners.

Subscribe to our eNews

Sign up to receive news on what is happening in science, engineering, technology (SET) and innovation in South Africa

Copyright © 2023 All Rights Reserved | National Science and Technology Forum (NSTF)